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Motivations of the Work

• Burnup measurement is the key to deciding if the pebble should be 

discharged or recycled during the operation of a PBR reactor

• Burnup measurement faces two challenges:
• High throughput

• High accuracy 

• Objectives
• Create and validate a workflow for modeling and simulation of both burnup and 

gamma-ray detection

• Build ML models

• Study performance of ML models
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FY23 Technical Tasks

• Modeling and simulation

• Add collimator to the workflow to reduce the flux

• Validation of the simulation workflow
• Develop full PBMR model

• Automate result generation

• Validate the burnup results

• Validate the conversion of Serpent output

• Explore the explainability of the ML model
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Validation of Burnup Model
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Modeling and Simulation Workflow
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Include burnup model 
and collimation
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Collimation Analysis

• Ejected pebbles from the core are highly radioactive, so 
collimator is needed to reduce the flux seen by the detector.

• A few options (MCNP, Geant4, Serpent) were considered based 
on ease of implementation, efficiency of simulation and accuracy.

• We decided to model the collimator directly into the source 
model in Serpent, eliminating the need to validate data 
translation to/from an external code.
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Collimation Analysis (Cont’d)

Source detector geometry including 
collimator

Photon tracks showing collimator effects 

7

8 cm

1 cm

Tungsten plate Tungsten plate



BNL-NN-20230407-0105-00-FORE 

Collimation Analysis (Cont’d)

Full spectra with and without collimation Collimation effect on specific energy ranges

---- collimation
---- no collimation
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Full Core Model for Burnup Validation

• Compared to the lattice model, a full-

core model allows

• More realistic flux and power distribution, 

hence resulting in more accurate burnup on 

a pebble per its location. 

• Full core modeling generates a potential to 

describe the effects of pebble flow path on 

the overall burnup 

• More accurate simulation to validate or 

compare to experimental data

• The effect of control and burnup poisons 

are better described in a full core model

Top view

Cut through Side View

Zoomed In Quarter Core

Pebble in Core
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Full core model of a PBMR design
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Benefits of Using Serpent In Simulation

• Serpent models are defined to represent the realism of the intended 
geometry.
• Explicit particle location definitions.

• Sensitivity study can be implemented without having to go through the 
hassle of generating zonal group cross-sections.

• You have the option of switching on and off the reproducibility on a 
specific simulation.

• A variety of detector and visualization options.

• Facilitates easy implementation of automation for simulation processes.
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Simulation Results
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Average burnup over 5 
pebbles: ~108 MW/MTU

Pebble
Volume 
(cm3)

Burnup 
(MWD/kgU)

Initial density of U 
(g/cm3)

Initial mass of U 
(gU)

Initial mass of U 
(kgU)

Duration of Burnup 
(days)

Power 
(MW)

Specific power 
(MW/KgU) 

1 9.8E-01 6.98E+01 9.20 9.00 9.00E-03 4.66E+02 1.35E-03 1.50E-01
2 9.8E-01 6.20E+01 9.20 9.00 9.00E-03 4.66E+02 1.18E-03 1.33E-01
3 9.8E-01 5.15E+01 9.20 9.00 9.00E-03 4.66E+02 9.76E-04 1.10E-01
4 9.8E-01 3.86E+01 9.20 9.00 9.00E-03 4.66E+02 7.32E-04 8.29E-02
5 9.8E-01 3.33E+01 9.20 9.00 9.00E-03 4.66E+02 6.31E-04 7.14E-02
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Simulation Results – (isotope verification)
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Simulation Results – (isotope verification)
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Simulation Results – (emission verification)
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Simulation Results – (emission verification)
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Explainability of ML Model
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Machine Learning for Burnup Measurement

• We have demonstrated promising results 
with our ML models
• Significantly outperforming linear regression 

method
• Specifically, high performance at short cooling

• Results accepted for publication
C. X. Soto et al. "A Better Method to Calculate Fuel Burnup in 
Pebble Bed Reactors Using Machine Learning," Nuclear 
Technology, DOI 10.1080/00295450.2023.2200573

• However, Neural Network-based ML models are inherently opaque
• Learned feature representations are not easily interpretable

• Therefore, confidence and downstream impact of this work may be limited in its present 
state

• Also, short-cooling performance merits deeper investigation
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Approaches to ML Explainability/Interpretation

• Two classes of approaches to explain neural networks
• Interpretation seeks to understand the mechanistic operation of a neural 

network model
• Identifying meaning for model weights; very challenging

• Explainability seeks to identify the causal links between an input data and a 
result, irrespective of the ML model type
• Identifying the features that corresponded to a particular model prediction

• We chose a feature-based explainability approach and identified two 
types of surrogate models/tools
• LIME: Linear Interpretable Model-agnostic Explanations

• SHAP: SHapley Additive exPlanations
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Explainability Study

• LIME and SHAP operate differently and 
complement one another
• LIME produces linear models generated by dense 

feature perturbation

• SHAP produces tree ensembles based on game-
theoretic feature contribution

• Feature density poses a problem for both, though

• We take a tiered approach:
• Iteratively re-bin spectra to perform LIME feature 

selection

• Filter, re-bin, and re-select until at raw spectral 
resolution

• Use final energy bins as SHAP input features for 
comparison

19

LIME works by creating linear decision boundaries using 
perturbed feature values

SHAP works by creating an ensemble of tree models based 
on Shapley-value estimations for feature contributions
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Results and Ongoing Work

• Initial results (figures below) highlight low-resolution spectral energy bands with 
likely causal relationships to burnup

20



BNL-NN-20230407-0105-00-FORE 

Next Steps
• Modeling and simulation

• Produce simulation data of full-core simulation and compare with ORNL work and published data on PMBR400

• Presentation at the INMM Meeting

• Finalize the integration of collimation simulation in the workflow

• Explainability
• We are now assessing across cooling and acquisition time datasets, and investigating feature consistency

• Next step is to iterate down to spectral resolution across burnup, cooling and acquisition conditions
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